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The main objective is to review the current status of research related to the
monitoring of agricultural production in the Sahel (west Africa). The Sahel
suffers from frequent shortages of food. It is therefore important to have a tool
to monitor environmental variables, and thus crop production, during the
agricultural season. Satellite remote sensing can contribute significantly to such
a system by collecting information on crops and on environmental variables at
a sub-continental geographical scale and with a high temporal frequency. One
part of the problem is to estimate crop acreage. The technique of area-sampling W
frame has to be adapted to the Sahelian landscape, which is dominated by
traditional farming systems. The second part is to estimate crop yields. Three
main approaches exist: statistical, semi-deterministic or deterministic. The use of ___

vegetation indices is discussed as well as techniques to derive biophysical N N
variables from remotely-sensed data. Finally, the integration of these
remote-sensing techniques with crop-growth models is discussed and some
research needs are identified. It is argued that the quantitative assessment of
agricultural production in the Sahel should be based on the integration of
remotely-sensed data with semi-deterministic agrometeorological models. This
approach will allow a regionalization of the production estimates.

Keywords: agricultural production, information system, remote sensing, Sahel.

1. Introduction

Scientific research on development issues and environmental concerns has become
increasingly specialized and fragmented. To compensate for this inevitable trend, there is
a growing need for parallel activities aimed at producing a synthesis of the on-going
research. The purpose of such a synthesis is to link the different pieces of research
together and to evaluate their compatibility and cohesiveness. This paper attempts to
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302 Agricultural production monitoring

integrate the resea-ch activities related to the monitoring of agricultural production in
west Africa, at the scale of the Sahel. Only those methods related to the monitoring of
rainfed agriculture will be analyzed. The result will be the definition of operational
methods and the identification of research needs.

Famines in Africa are usually localized events and rarely occur across very large
areas. Regions suffering from food shortages are sometimes adjacent to regions with an
agricultural surplus. The first solution to famines and malnutrition should thus be the
increase in interregional fluxes of food inside Africa. However, the infrastructure for the
transportation and commercialization of agricultural surplus between regions is
generally lacking in Sudano-Sahelian zones. Thus, a better exploitation of interregional
complementarities to face food shortages requires a considerable effort to mobilize the
necessary resources: market incentives to collect agricultural surplus, roads and means
of transportation, stocking facilities and distribution networks. A time lag will always
exist between the onset of food shortages and the import of agricultural surpluses from
neighboring zones. There is a fundamental need to provide local parties with timely and
accurate information on the status of agricultural crops across a very large area. Existing
famine early-warning systems qualitatively anticipate food shortages. Most of these
systems, reviewed by Walker (1989) and Hutchinson (1991), have chosen to view early-
warning as distinct from crop forecasting or agricultural production estimation.
Consequently, they have adopted simple methods based on a qualitative assessment of
crop performance. Lower levels of accuracy are accepted in exchange for shorter
reporting times and lower costs (Hutchinson, 1991).

In addition to these qualitative efforts, there is also a need for information systems to
estimate agricultural production quantitatively in regions which are not affected (as well
as those affected) by a lower than usual agricultural production. Such systems would
allow the identification of regions with an agricultural surplus and the quantification of
this surplus. With an objective of solving food shortages with local resources rather than
food aid from foreign donors (which should be required only in extreme conditions), this
information requirement outstrips the capability of existing famine early-warning
systems. The needed information on agricultural production should have the following
characteristics:

I. Coverage of large areas-i.e. information at a small geographical scale.
2. Delivery of the information on agricultural production a few weeks before the

harvest (after the heading of the crops)--estimates of final crop yield rather than
long-term early warning.

3. Quantitative estimation of agricultural production rather than qualitative com-
parison of crop years.

4. Regionalization of the information-the spatial variability of agricultural pro-
duction is the critical information needed to organize interregional transfers of
food; ideally, the areal units for reporting should be related to existing adminis-
trative units.

5. An easy and rapid transmission of the information should be possible with the
existing infrastructure of telecommunication in Sahelo-Sudanian regions.

The objective of this paper is to survey the methods that would allow a reliable and
quantitative estimation of agricultural production with a sufficient time threshold to
achieve food security. This approach differs from conventional methods of establishing

II ,



E. F. Lambin et aL .303

agricultural statistics in: (I) the timeliness of the estimation; and (2) the geographic
coverage of such information. Given these two characteristics, satellite remote sensing
plays an obvious and important role in such an effort. Only the methods applicable for
rainfed agriculture will be surveyed. Methods to monitor irrigated crops are analyzed in
other publications (for instance, Tennakoon e( al., 1992).

2. General structure of a system for agricultural production monitoring

Agricultural production is estimated by multiplying crop acreages by the yields for each
crop in a given area. The estimation of these two regionalized variables defines the two
main and relatively independent components of the information system. These two
variables can be estimated using a combination of remotely-sensed data and ground
data.

2.1. CONTRIBUTION OF REMOTE SENSING

The research on the contribution of remote sensing to crop forecasting and to the
estimation of agricultural production generally concludes that, at the present level of
technology: (1) no method exists to estimate crop acreage reliably from satellite data in
regions of traditional agriculture without a heavy complement of ground data collection;
and (2) spectral data alone have not proven satisfactory in estimating crop yields.

Concerning the first point, various attempts to classify high-resolution, remotely-
sensed data in order to discriminate between crops in Africa have failed. The reasons are
that the spectral separability of tropical crops is low, and, moreover, the traditional
farming practices of the region are not compatible with the spatial resolution of existing
high-resolution Earth observation satellites (20 m for SPOT multispectral data or 30 mi
for Landsat Thematic Mapper data). The major obstacles to a spectral classification of
crops in a landscape dominated by traditional farming practices are: small and irregular
field sizes, mixture of crops within fields, cultivation under tree cover and contiguity of
fallows with cultivated fields. In addition, the probability of acquiring satellite data over
Sahelo-Sudanian zones during the growing season is extremely low, given the persistent
cloud cover. The large-scale operational use of satellite data for crop inventory is not
practicable in the region without the support of an intensive field campaign (Revillon,
1987; Lambin, 1988; Imbernon et at., 1988), although some localized experimental
projects have succeeded and Azzali (1990) successfully classified and discriminated fields
of maize in Zambia based on a multitemporal analysis of a vegetation index calculated
from Landsat Thematic Mapper data.

Concerning the estimation of crop yields, the major difficulty in using remotely-
sensed data lies in the spatial and temporal instability of the relationship between crop
yields and spectral indices (Bartholom6, 1988). Equally variable are the major determin-
ants of crop yield such as rainfall, soil moisture, soil fertility and land use practices. As a1
result, a remote-sensing model to estimate crop yield requires considerable calibration 0
with numerous field data. Moreover, the sensor and atmospheric factors affecting'd 03
spectral indices measurements would have to be neutralized. Finally, although remote-±o•-
sensing methods allow reliable measurements of primary production, the harvest yield
depends on the proportion of the production ultimately diverted to the harvested part of
the crop. This proportion, measured by the harvest index, cannot be estimated by -r:: remote-sensing techniques (Prince et al., 1990). An alternative to using pure remote-.ity oa
sensing models to estimate crop yield is to base the yield estimation on deterministic crp..
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growth models or semi-deterministic agrometeorological models, and to estimate some
of the input biophysical variables required by these models through remote-sensing
methods which are calibrated by ground observations.

Despite these realistic assessments, it is possible to extract useful information from
the synoptic view and repetitive acquisitions of satellite data as long as it is recognized
that the analysis of remotely-sensed data must be integrated with a ground-sampling
strategy and with crop-growth models. The question is how to minimize the need for
ground-collection systems or how to optimize the ground campaign for a given degree of
accuracy of the estimations. Remote sensing can be used as a powerful spatial
extrapolation tool if properly integrated in an information system with ground-
calibration data and accurate data-processing methods.

2.2. COMPONENTS OF THE INFORMATION SYSTEM

As shown in Figure I, the final component of the information system is a module to
estimate agricultural production by extrapolating, at different geographic levels, the
product of the crop acreage and the estimated yield. This module will be based on: (1) an
area-sampling frame; and (2) a yield-estimation model. An area-sampling frame is a
method for estimating crop acreages. It is based on a multilevel stratification scheme to
determine the spatial sampling of an area. The stratification procedure delineates
homogeneous zones in order to minimize the intra-stratum variance of the variable to be

estimated. A yield-estimation model should be based on a crop growth model or an
agrometeorological model and should be connected upstream to several sub-systems
which estimate biophysical input data such as rainfall, leaf area index, air temperature,
etc. These sub-systems can be ground-based or based on remote-sensing models. If the t
variables are regionalized, they can be stored in a geographic information system which
would provide the best framework in which to organize the database and to connect it
with data analysis functions. In the next sections we examine the different sub-systems
separately.

3. Spatial stratification scheme

Estimation of crop yield and crop acreage requires the collection of a sample of
statistically representative ground data. For the Sahel, the collection of ground data on
agricultural production is a difficult task because of the size of the region and the
diversity of farming systems within its boundaries. A solution to sampling in a
heterogeneous landscape would be to apply a multilevel spatial stratification procedure
to delineate homogeneous zones according to criteria related to crop acreage and/or
crop yield prior to making ground measurements. This method, known as "area-
sampling frame", was developed in 1938 for the United States and has been applied in
temperate regions of intensive mechanized agriculture (for example, Holko and Sigman,
1984; Ministry of Agriculture and Forestry, Italy, 1989) as well as in tropical regions
(Hassan et al., 1987; SYSAME, 1990). However, Hassan and Wigton (1990) reported
difficulties in the application of the area-sampling frame method to areas of traditional
agriculture in Sudan. Redondo et al. (1984) had similar difficulties in Argentina, where
the natural spatial heterogeneity of agricultural regions was too high. The area-sampling
frame method was designed for regions with a high occupation density. These conditions
are not met in Sahelian regions and, thus, the area-sampling frame must be adapted. A
common spatial stratification scheme for crop acreage estimation and yield estima`:on is

tro
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Figure 1. General structure of an information system for agricultural production monitoring.
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AVHRR IAC data, with a spatial resolution of I-I x I.I km, would provide adequate
coverage. Second, agricultural and non-agricultural regions have to be differentiated.
The area which is not under" cultivation has to be removed from the surface which is
sampled. Supervised classification techiiiques applied to AVHRR LAC data can be used
to block out areas such as rangelands, urban areas and river valleys.

Two classes of criteria can be used to determine a multilevel stratification scheme.
The first is based on land use practices and farming systems; the second class of criteria
focuses on physical characteristics such as soil types, topography and moisture avail-
ability. The stratification scheme should follow the three organizational levels of the
Sahelian landscape as defined by Bartholome (1986): the agricultural region, the land
facet and the field. To be effective, the stratification should reduce the variance of crop
acreage and crop yield within each stratum. Lambin and Lamy (1986) have shown that
land use practices can be related to spatial patterns of the fields as aetected on Landsat
MSS images. This criterion can be quantified and used to segment the region at a small
geographical scale into homogeneous agricultural regions. At the second level of
stratification, land facets are defined by physiographic parameters in order to generate
zones of uniform crop potential and soil fertility. These units can be mapped using
supervised classification techniques on SPOT imagery or through aerial photograph
interpretation combined with soil map analysis (Bartholom6, 1986; Lambin, 1988). In
the "Africa Early Crop Warning System" of the Canadian Agency of International
Development (CIDA), a stratification based on regions with a uniform productivity has
been performed using FAO's soil and vegetation maps and AVHRR remotely-sensed
data (Hanna and Mack, 1986). One unresolved problem of spatial stratification in
regions of traditional extensive agriculture is the differentiation between permanent and
itinerant agriculture. It is desirable to adopt a different sampling rate for these two types
of farming practices, but fallows are difficult to recognize on remotely-sensed data. !

The total potentially arable land is a rather static measurement. Thus, the base map

and the stratification scheme should not be produced every year; an update every 5 to 10
years is sufficient. Once the stratification is completed, sample units, or fields, should be
selected from each zone. Crop acreage and input variables for yield-estimation models
are obtained from ground surveys. Sample data are collected by either the transect or
segment method. Both methods have the advantage of decreasing campaign costs
through the aggregation of a restricted number of observations either along a line
(transect) or over an area (segment).

4. Remote sensing of biophysical input data to yield-estimation models

The main constraint to yield estimation at the regional or sub-continental scale is not the
availability of appropriate yield-prediction models, but rather the availability and
accuracy of the input data for these models. The use of remotely-sensed data to estimate
biophysical variables which are related to agricultural production has several advan-
tages: a synoptic view over large regions, the digital character of the data which allows
computer-processing methods to be applied, the possibility of near-real-time transmis-
sion of the data and the potential for a centralized data-processing unit to facilitate the
assessment and control of the quality and accuracy of the data at all levels of the
processing chain. A review of the main methods for estimating the variables related to

agricultural production follows. These variables fall into three main categories: informa-
tion on farming practices, climatic data and soil data.
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4.1. FARMING SYSTEMS SURVEY

Farming systems include the strategies adopted by cultivators to adapt to environmental
and socio-economic constraints. Such adaptations include selection of: (I) crop types
and varieties; (2) techniques to restore or improve soil fertility; and (3) the levcl of
intensity of cultivation. Knowledge of these strategies contribute to the determination of
crop yields. In addition, farming practices determine important variables for yield-
estimation models such as the date of sowing, the density of crops in the fields, the
amount and type of external agricultural inputs, the reduction of solar irradiance on
crops grown under tree cover, the possible decline in organic-matter content of the soil
due to inappropriate management practices, etc. A field survey of farming systems is
thus a very important component for monitoring agricultural production. Socio-
economic data on population, food stocks or market prices also have to be collected to
assess the food security status of a region. Remote sensing can be used to design a
sampling strategy to collect these data (see Section 3) and to suggest hypotheses on
observable variables such as soil erosion, size and pattern of the fields, and rate of
occupation of the land. For example, Guyer and Lambin (1993) could discriminate
tractor-cleared fields from hand-cleared fields in a region of Nigeria by using shape
criteria derived from multispectral SPOT data.

4.2. RAINFALL ESTIMATION

In the Sahelian zone of Africa, where average annual rainfall ranges from 150 to
600 mm. water is a major limiting factor in agriculture. The vastness of the area and the
rapid development of weather patterns within the Inter-tropical Convergence Zone
present a multitude of problems in obtaining accurate ground measurement of rainfall
using traditional meteorological tools. Patterns of rainfall in the Sahel show consider-
able spatial variability over relatively short distances and rain gauges across the region
are too sparsely placed to yield consistently reliable data (Flitcroft et a/., 1989). In much
of the Sahel, there may be only one rain gauge per 10 000 km 2. The minimum required
spacing of rain gauges is I per 1000 km 2 and even that density is not sufficient when
rainfall is sporadic and spatially variable (Milford and Dugdale, 1990). Because of the
variable nature of the rainfall pattern in the Sahel, it is difficult to interpolate values
between point measurements. Research shows that the correlation between rainfall
measurements falls off rapidly with distance from a point-measurement site. Although
the use of kriging techniques has improved researchers' understanding of the spatial
correlation structure of the immediate areas in which rainfall is occurring, interpolation
methods can only be used in areas that are fairly small relative to the size of the storms.

These difficulties notwithstanding, point measurements from rain gauges can be used
to calibrate, adjust and verify area estimates of rainfall derived from remotely-sensed
data. Several rainfall estimation methods using remotely-sensed data are based on cloud
studies from data in the visible and thermal infrared spectral channels. Satellite sensors.
measuring radiation in these wavelengths, can be used for identification of cloud line
growth, cloud temperature, cold cloud duration, cloud edge temperature gradient, cloud
temperature in excess of a threshold, and cloud type, thickness and height. Research
techniques based on cloud temperatures and appropriate temperature thresholds can be
used to identify dry spells (Milford and Dugdale, 1990). Cold cloud statistics are the
basis for several methods of assessing the potential of storm systems to produce rainfall
(Barrett and Martin, 1981; Milford and Dugdale, 1990; Rosema, 1986; Assad et al.,

I

_I



Agricultural production moluioring

1987). The statistics are based on AVHRR or Meteosat visible and or thermal infrared

data. Using visible imagery, the observation of cloud growth and development derics

from the relationship between cloud brightness and cloud thickness. Cloud thickness is

an indication of water content and probability of rain. Studies based on thermal infrared

data make use of' the relationship between area precipitation and the duration of cold

cloud pixels (CCD), a cloud temperature property which indicates. oer time. Its

rainbearing potential (Snijders, 1991 ).
The Tropical Agricultural Meteorology using SATellite (TAMSAT) program from

the University of Reading (U.K.) involves the definition of high cloud areas where cloud

temperatures fall below a certain threshold. In TAMSAT, the Meteosat ('() \alues arc

converted to rainfall amounts, by using regression parameters which are derimcd fruni

the comparison of ground and satellite data (Flitcroft et al.. 1989). This method works
better at dry, higher latitudes of the northern Sahel (Snijders. 1991 ). Rosema (1990) has

extended this method by adding an indication of the latitude of the pixel under

consideration. Huygen (1989) has demonstrated in Zambia that the parameters of the

linear regression vary from one 10-day period to the next. ADMIT. the fully-automatcd
data-processing program developed by University of Bristol associates. provides accur-
ate rain estimates at the lower latitudes of the southern Sahel where rainfall is hea~ier
(Snijders. 1991). Two significant differences between this method and the ( CD mcthods,
are the use of AVHRR data and the identification of raindays rather than duration of
cold cloud pixels. ADMIT uses a classification scheme to identitf wet pixels and dr\
pixels using thresholds applied to AVHRR images in the visible and thermal infrared

bands. A wet pixel is assigned a rainfall estimate value equal to the climatological mean
for that location. Improved results were obtained by using mean rain per rainda\ data
rather than climatological means.

Studies in Senegal have shown that the accumulated soil surface temperature olver a
short period of time (10 to 30 days) is correlated to precipitation during that period
(Assad et al.. 1987: Seguin et al.. 1989). This is related to the cooling etlect of rainfall on

soil. The addition of accumulated surface temperature improves the CCD method for
rainfall estimation (Guillot. 1990).

4.3. FVAPOTRANSPIRAT1ON ESTIMATION

Rainfall itself is not the most important parameter in crop-yield estimation: what reall\
needs to be known is the sdil moisture and watt r availability for plant growth. In the

Sahel, moisture availa;hility and soil nutrient, are the primar\ limiting factors to
agricultural production (Breman and de I,,it, 1983). Therefore. the accurate measure-
ment of water availability is a key to accurate crop-growth modeling. Water availability

for plant growth is a complex function of rainfall, hydrology, soil properties, temperat-
ure-related evaporation and plant transpiration and assimilation capabilities. Milford
and Dugdale (1990) have-shown that the amount of rainfall :nfiltrating into the soil is

not uniform: local runoff, aistributes the rain. Rosema (1990) has compared precipi- -
tati maps with ev 'ration maps, bot'h -ived from satellite data. and a

n of differen bt observed .the two maps. Only when available
(radifall draintd ae evapotranspiration (water vapor 5

and plane rratn) is there sufficient moisture for
a Ev ration*0erefore, a crucial variable in

rowth m 4mt -is, on O average, small, evapotranspi-

isnd hem~bwof crop growth.A
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Evapotranspiration is equivalent to the latent heat of evaporation which functions as
part of the energy balance equation. The energy balance equation states that the net
radiation (Qn) of the earth (absorbed solar energy, and emitted, and reabsorbed long-
wave radiation) is equal to the flux of latent heat of evaporation (Q, ). sensible heat flux
(QH) and conductive soil heat flux (Q(j). The basic energy budget equation (Oke. 1987) is
therefore rearranged as the following:

O-Q - Q(,- Q"-

Net radiation and soil heat flux can be determined from micrometeorological measure-
ments or remote-sensing techniques. However, simple estimates of sensible heat flux
(which is a function of windspeed. roughness and atmospheric stability) are more
difficult to obtain. Because evapotranspiration is usually required (at a variety of spatial
resolutions) as a daily quantity and the remotely-sensed component data is of an
infrequent and instantaneous nature, various methods to integrate a basic energy model
over a day have been developed. Rather than explicitly measuring sensible heat and soil
heat in a deterministic fashion, semi-empirical energy models are most commonly used
(Jackson et al.. 1977). These models assume that the difference in daily values of latent
heat flux and net radiation is linearly related to the stress degree day (or the difference in
skin and air temperature at solar noon) and take the following form:

QF Fdilv - QNdai,) = A + B( T- T- )-

Sequin and Itier (1983) have shown that these models have a theoretical basis and that
the empirically-derived constant B contains information on the roughness, stability and
wind speed. A number of authors have elaborated on these basic equations. The
techniques of Rosema (1986, 1990), Thunnissen and Nieuwenhuis (1990) and Lagouarde
(1991) seem to strike the best balance between operational expediency and physical
accuracy in providing an evapotranspiration value.

Rosema (1986, 1990) takes a more deterministic approach to produce daily continu-
ous evapotranspiration maps. When a pixel is cloud covered, evapotranspiration is
calculated with the Penman-Monteith equation (Oke, 1987) and a soil dry depth model.
When a pixel is clear, the semi-empirical method above is used with the constant B
determined from windspeed, temperature and an estimation of roughness and vegetation
cover derived from recent relative evapotranspiration measures. Although this method is
computationally intensive, it has been employed with succ.ss in regions of the Sahel by
using atmospherically-corrected Meteosat data. The physical model is not site specific
and can be applied across the Sahel. It does, however, require ancillary meteorological
data such as air temperature, windspeed and humidity which are difficult to acquire
consistently.

Thunnissen and Nieuwenhuis (1990) use potential evapotranspiration and replace
the midday stress degree day with the temperature difference between a crop transpiring
at actual soil conditions (remotely sensed) and a crop transpiring at optimal soil
conditions. They use a separate deterministic simulation model to calculate realistic
empirical B constants. By normalizing the energy balance equation by the potential
evapotranspiration, a B constant which is less sensitive to temperature and humidity is
calculated. However, this per pixel constant is still very sensitive to wind speed, crop
height and roughness and requires full soil coverage. Although this technique shows
promise in small regional applications, the requirement for fine-resolution crop height

•' i•
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and roughness values and for variable wind-speed values over the Sahel is unrealistic.
Furthermore, crop coverages in the Sahel are quite low, which also adversely affects the
accuracy of the estimated evapotranspiration values. However, Caselles el at. (1992)
have recently proposed a modification of the B constant which uses the satellite
observation geometry to compensate for variations due to partial soil coverage.

Lagouarde (1991) also uses the semi-empirical energy model, with skin temperatures
from AVHRR and air temperatures from meteorological stations. The con,-ant B is
empirically derived for a variety of roughness lengths. Evapotranspiration values can
then be calculated on a per pixel basis by using NDVI values to determine appropriate
roughness values and using remotely-sensed estimations of daily net radiation. Decadal
cumulative estimates and 5-day cumulative estimates with Meteosat were also tested
with success (Seguin et al.. 1991). This method needs to be expanded to take wind-speed
effects into account. The authors feel, however, that the method is only applicable to
regions with pure pixels since the B constants are only derived for uniform crops. This is
a serious constraint for operational applications in the Sahel.

Lagouarde's work, although innovative, is the most empirical and the link between
NDVI and surface roughness is somewhat tenuous. Furthermore, the author's concerns
about the method over mixed-crop pi:xels tas opposed to pure pixels) is legitimate. Most
Sahelian pixels will contain a coml. :mation of sparse crop coverage and natural
vegetation. Rosema's approach is more i igorous but the key constant B seems somewhat
weakly described for a satellite pixel. Xosema's technique has already been tested with
success in portions of the Sahel, however. The use of a full Penman Monteith
calculation does provide estimations for cloudy pixels (even though it is computationally
expensive). Perhaps in a spatially stratified or GIS approach (such as Berkhout. 1986).
an optimal or representative B constant can be prepared for similar land strata. Crop-
covered land strata are regions with relatively similar soils, topography and land use
practices, and therefore should contain crops with similar heights and roughness.
Isolation of land use practices such as subpixel fields can clarify the mixed-pixel case.
Reference strata B constants can be calculated frequently enough to represent the
changing structure and roughness of the crop canopy throughout the gro'wing season. A
range of B values representing different wind speeds over each facet would also need to
be archived. Deterministically-derived reference B constants can be compared to test
constants derived from field measurements. These reference B constants could be used to
calculate evapotranspiration at all pixels over a range of pixel temperatures within each
facet. The B constant used in the approach of Thunnissen and Nieuwenhuis (1990) and
Caselles et al. (1992) is particularly appealing as it is less sensitive to atmospheric
conditions. Furthermore, this method relies on optimal temperature techniques and does
not require ground-based and interpolated values of air temperature (which. given the
meteorological station sparsity in the Sahel, are certain to introduce gross errors).

4.4. SOLAR RADIATION/IRRADIANCE ESTIMATION

The accurate estimation, at a regional scale, of global (from all directions) and total (in
the visible and near infrared) solar ra,: ation incident at the Earth's surface is another
component of yield-estimation models. This variable allows the estimation of photosyn-
thetically-active radiation (PAR). The effect of atmospheric nebulosity and turbidity has
to be taken into account. Some methods have been developed to deriv, the incident
radiation from meteorological satellite data. There are two main approaches:

[ 1'
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1. The estimation of incident radiation from the reflected radiation measured by

satellite (Brakke and Kanemasu, 1981, Kerr and Delorme, 1981: Dedieu et al.,
1983); this approach is limited by the difficulty of accounting for atmospheric
perturbations.

2. The estimation of global solar radiation from a cloud index. For instance, the
Heliosat program analyzes multitemporal data from geostationary satellites to

derive albedo, apparent albedo and maximum of the albedo values for cloud, at
the scale of the planet (Diabate et(t., 1989). A total atmospheric transmission
factor is derived. An estimate of solar radiation received at the ground is simply
the product of the atmospheric transmittance and the horizontal irradiance at the
top of the atmosphere.

4.5. SOIL NUTRIENTS STATUS ES1 iMAI[ON

Remote-sensing applications for the identification and mapping of soils across the Sahel
have not been developed on the sub-continental scale. Reliance on ground data and
extensive field work makes soil mapping a long and costly process, yet the information is
a critical input to crop-production estimation. In the dry, northern regions of the Sahel,
water availability is the limiting factor in both primary and agricultural production.
Vegetation on northern rangelands characteristically makes efficient use of available
nutrients in the soil and the paucity of rain serves to protect valuable nutrients from
dilution. However, further south at latitudes with higher annual precipitation, the level
of nutrierts and their availability to plants is the critical factor. The southern region of
the Sahel is more commonly subject to agricultural and animal production practices that
strain the carrying capacity of the land and exhaust nutrients that are already at low
levels (van Keulen and Breman, 1990). There is a measured Sahelian gradient in soil
nutrients that is similar to the rainfall gradient, but this information is probably too
general to be of use as an input to crop-growth models where soil nutrient information
must be extremely detailed and site specific (van Keulen and Breman. 1990). In the
absence of comprehensive soil maps for the Sahel, the nutrient gradient could be keyed
to the latitudinal stratification of precipitation regions or to agricultural practices of
different ethnic groups in a spatial stratification of the area according to physiographic
units.

4.6. REMOTELY-SENSED VEGETATION INDICES

4.6.1. Interpretation of vegetation indices

Remotely-sensed vegetation indices are arithmetic combinations of spectral responses in
different wavelength bands which emphasize a particular feature of the vegetation. They
have become widely-used tools in the analysis of remotely-sensed data for vegetation
studies in general. The most commonly used is the normalized difference vegetation
index (NDVI), which is IR-R/IR+ R. Empirical studies have successfully corrmated
NDVI with variables related to: (I) canopy quantities (leaf !-rea index, above-ground
biomass, per cent canopy cover, etc.); (2) state of the vegetation (stress, vigor,
chlorophyll content, etc.); (3) solar radiation interaction with plant canopies (intercepted
or absorbed photosynthetically active radiation, etc.); (4) vegetation moisture (leaf water
content, water satisfaction index, etc.); (5) ecological variables (rainfall, potential and



312 Agricultural production monitoring

actual accumulated evapotranspiration, surface temperature); and (6) instantaneous
rates associated with the activity of the vegetation (rates of photosynthesis, transpi-
ration, carbon dioxide exchange). According to this last group of interpretations, time
integrals of vegetation index data can provide estimates of biomass production. This
wide diversity of interpretations may be viewed positively as a sign of the rich
information content of the NDVI. and its value as a general biospheric indicator, but it
also reveals the ambiguity of the nature of the NDVI.

The relationship developed between spectrally-derived vegetation indices and the
biophysical properties of canopies is almost always indirect. It is clear that most of the
variables with which the NDVI has been associated are closely interrelated (they all have
to do with vegetation canopies, biomass development or ecological conditions). but they
do not have exactly the same biophysical meaning. Theoretical analyses (SeIlers, 1985,
1987; Tucker and Sellers, 1986; Choudhury, 1987, Asrar et al., 1989) have analyzed the
biophysical processes that justify the interpretation of the NDVI in terms of instantan-
eous rates associated with vegetation canopies-gross primary productivity and evapo-
transpiration. However, these theories do not support all empirical relations that have
been established with NDVI. In spite of the availability of these modeling studies, the
successful relationship between NDVI and biophysical variables only corresponds to
large-scale first-order correlations, the exact physical significance of which still needs
more precise analysis (Seguin et al.. 1991). In general. the NDVI cannot be considered as
a measurement of biophysical quantities but should rather be treated as a dimensionless
empirical objectifier (or an indicator) of such quantities.

4.6.2. ND II and 4PAR

Several biophysical variables which have been correlated to the NDVI can be used in
crop yield estimation models: leaf area index ( LA41). absorbed photosynthetically-active
radiation (APAR). total dry-matter production (TDMP). net primary productivity
(NPP) and actual evapotranspiration (AET). The fundamental logic in terms of crop
yield cstimation is as follows:

APAR =.f( LAI).
TDMP or NPP=1f ( APAR, AET) and
Yield=f(TDMP).f being a crop-specific function.

The leaf area index represents the area of foliar coverage per unit ground area and can be
used in combination with incoming solar radiation to determine the amount of PAR
which is intercepted by the canopy. Actual evapotranspiration can act as a surrogate
measure for the relative effectiveness with which a canopy is able to utilize APAR. This
combination of parameters can be used on an integrated or instantaneous basis to
determine TDMP or NPP as long as there is adequate information on the conversion
efficiency of energy to plant biomass for the existing crop type. Finally, if the
relationship between biomass productivity and crop yield is known for the existing crop
type. then a crop yield can be estimated based upon NPP or TDMP. The literature
suggests that NDVI data are a better indicator of APAR than of LAI or biomass
(Kumar and Monteith, 1982; Steven et al., 1983; Asrar el al., 1984, 1986; Sellers. 1985:
Daughtry et al., 1985; Choudhury, 1987). Thus, currently, the most reliable use of NDVI
data in crop-growth models is as a quantifier of APAR.
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4.6.3. ND VI and evapotranspiration

Because actual evapotranspiration is one of the best indicators of biomass productivity
in the water-limited Sahelian environment, NDVI and evapotranspiration should be
strongly correlated (Seguin et at., 1989). Sogaard (1988) found a significant correlation
between seasonally integrated NDVI and accumulated evapotranspiration (derived
from satellite methods) in regions of dense biomass. In sparsely-vegetated regions,
however, the relationship is less reliable. This inconsistency is believed to be due to the
influence of soil color contamination on the NDVI values. Even iii localized, densely-
vegetated regions, although integrated NDVI can be used to provide end-of-the-season
evapotranspiration maps, it is not suitable for forecasting. Satellite-derived evapotrans-
piration fluctuations precede NDVI variations (and thus biomass variations) by as much
as 4 weeks, emphasizing the importance of satellite evapotranspiration monitoring for
biomass estimation (Rosema, 1990).

5. Yield-estimation models

The biophysical data related to agricultural production need to be integrated in models
in order to estimate or predict crop yields. Existing approaches to the problem of yield
estimation vary from experimental methods which, while theoretically sound, present
logistical problems in terms of acquisition of accurate surface data, to operational
methods which may lack detail and accuracy, but provide some useful information in a
timely manner. Experimental procedures tend to be deterministic in nature and require
detailed information on the vegetation-soil-energy system. Operational approaches
tend to be semi-deterministic or statistical in nature and require less-detailed data as
input. It is necessary to select feasible scenarios for crop yield-estimation given the
variables which can be accurately estimated from remotely-sensed data and which satisfy t
our spatial and temporal constraints. This includes the identification of a combination of
data and models which will provide the highest possible accuracy or the best trade-off
between accuracy and cost. We will examine deterministic, statistical and semi-
deterministic approaches.

5.1. DETERMINISTIC CROP-GROWTH MODELS

A crop-growth model is a quantitative representation of the mechanisms and processes
that determine the dynamics of a crop. These deterministic models are used to study the
rate of growth of crops based on a description of photosynthetic activity, leaf area
development, etc. and to analyze the influence of environmental factors on the growth of
crops. Crop-growth models require daily estimations of input values for a large number
of variabies. Common variables necessary to run these models include intercepted
photosynthetically-active radiation (IPAR), soil moisture holding characteristics, crop
type, temperature, rainfall, crop structure, actual evapotranspiration (AET). biomass
conversion efficiency and yield conversion efficiency. Some of these variables can
theoretically be estimated using remotely-sensed data. Different models exist for
different geographic contexts and different crops. For each type of model, the emphasis
focuses on the main limiting factor(s) for that crop in that environment. Some of the
main crop-growth models that have been used for semi-arid tropical agriculture are:

i. SORGF was developed in the United States for sorghum (Arkin et al., 1976) and
applied to semi-arid tropical regions (Huda et al., 1987).

4
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2. CERES-MAIZE, the most widely-used crop-growth model in the United States
(Ritchie, 1985), has been tested for a variety of environments. du Pisani (1987) has
applied this model to evaluate the impact of drought on maize yields in South
Africa and to predict that yield.

3. WOFOST (van Diepen et al., 1989) is a powerful and flexible numerical
simulation model of crop growth which integrates physical and agronomic
information. Model data requirements include site-specific information such as
the starting date of crop growth; initial soil-moisture conditions, physical
properties of the soil surface such as surface-water storage capacity and rnatural
soil fertility; and more general data on climate, crop and soil characteristics.
WOFOST computes yield under three growth constraints: light and temperature
regime, water supply or soil nutrients supply. The selection of the constraint
situation depends on the type of agriculture practiced (irrigated. rainfed or
fertilized). This model has been applied, for instance, in Zambia (Wolf et al.. 1987,
Azzali, 1990).

A purely deterministic approach for agricultural production monitoring would rely
on one of these deterministic crop-growth models and on the estimation of all required
input data on a daily basis, at the scale of the fields. This approach, while highly
accurate, is impractical at the sub-continental scale. The estimation of all input data to
simulate plant growth across the Sahel would require a very dense network of field
stations with data-transmission facilities, and/or highly performant remote-sensing
systems to measure these variables from space. While we cannot exclude possibility that
such an infrastructure will exist in the future, today the deterministic approach is not
feasible in the Sahel, at least at a sub-continental scale.

5.2. STATISTICAL AGROMETEOROLOGICAL MODELS

Agrometeorology is the real-time application to agriculture of the spatially synoptic
meteorological information, related to the present weather and, when possible, related to
the forthcoming weather (Franquin, 1984). Two main agrometeorological approaches
are possible: statistical or semi-deterministic approaches. The semi-deterministic ap-
proach will be examined in Section 5.3. The statistical approach relies on current
meteorological data which are analyzed in terms of potential crop yield based on
archival data. The functional relationship between climatic data and crop yield is not
developed as such. Crop yields can potentially be estimated using statistical relationships
with rainfall or the NDVI, two variables that can easily be derived from remotely-sensed
data. The paucity of archival data is the main limiting factor of the feasibility of such
analysis. Many countries in the Sahel do not have consistent records of remotely-sensed
and/or meteorological data for this century.

5.2.1. Rainfall and crop yield

Some studies have explored the direct correlation between rainfall and crop yield. In
Botswana, where rains are marginal and unevenly distributed, Vossen (1988) has found
that statistical relations between average annual rainfall and crop yield are improved by
using a weighted average of the three stages of the rainy season (early, mid and late).
While there is no accounting for distribution effects of rainfall, evapotranspiration, soil
capacities, runoff, etc., this method offers the advantage of depending on readily
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accessible data. Seguin et al. (1989) conducted a study to assess the use of meteorological
satellite data to monitor crop-water conditions in the Sahel. Their work included a
correlation study between rainfall and crop yield, which was not found to be satisfac-
tory.

Justice et al. (1991) have investigated the synergistic use of satellite data in vegetation
monitoring, using Meteosat data to derive rainfall estimates and AVHRR data to
interpret vegetation response via the NDVI. Rainfall estimates and NDVI show
comparable spatial variations and a similar north-to-south gradient. Furthermore, the
researchers identified time lags between rainfall and vegetation development. While
acknowledging that crop-yield estimation is not yet feasible using this method, these
authors demonstrate the potential of using satellite datasets to identify areas where
production potential is not being met.

5.2.2. ND VI and crop yield

For crop assessment in semi-arid Africa, the NDVI can be interpreted or utilized in
several different ways. One apprc 't is empirical and relies on linear regression models
between final crop yield and instant, .,ous NDVI. The correlation coefficient between
NDVI and crop yield is maximal at the heading of the plant (Johnson eI at., 1987). The
main limitation of this approach is the instability of the relationship through time.
Bartholom6 (1988) has shown that the accumulation of the NDVI over the reproductive
phase allows the stabilization of the relationship. The parameters of the regression can
be defined a priori for yield forecasting (Bartholom6, 1988: Azalli. 1991, Rasmussen,
1992). A regression analysis requires the assumption that a functional relation exists
between the variable to be explained (NDVI) and the explanatory variable (crop yield or
total biomass). The NDVI is thus implicitly interpreted as a dependent 'ariable which is
an "effect" of the crop yield. Other vegetation productivity models accept NDVI as an
independent variable, i.e. a variable which is interpreted as a cause. However, since
NDVI reflects the development of the plant during the growing season, it is not
independent of other growth parameters such as energy and water available for plant
growth (Cihlar et al., 1991). Tucker et al. (1980) used the NDVI curve to determine the
period of highest correlation with final yield, which corresponded to the maximum
amount of leafy biomass present. Subsequent research by Hatfield (1983) revealed that
90% of reproductive dry matter is accumulated at the time the value of the vegetation
index is 0-5 of the maximum, which occurs at grainhead emergence. These studies help to
define the appropriate time period for integration of the NDVI in different environ-
ments.

A second approach is statistical and is based on pluriannual archives of seasonal
series of NDVI calculated from AVHRR data (LeComte, 1989). The seasonal develop-
ment of the NDVI at a location during a given season is compared to the -'normal"
spectral development, statistically derived from the pluriannual data set. Any departure
from the "normal" situation is interpreted in terms of climatic events or cropping
practices and is related to variation in expected yield. In this approach, the NDVI is
interpreted as being an empirical indicator of the state of the vegetation and allows a
qualitative monitoring of vegetation stress (Tucker et al., 1980, Johnson et al., 1987).

Use of the NDVI for crop-yield estimation and forecasting in semi-arid regions of
Africa is a promising application, but it has yet to be developed operationally (Prince
and Justice, 1991). A major constraint to this approach is the lack of consistent archives
of NDVI data over Sudano-Sahelian regions. The compilation of such archives is a
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priority for several institutions operating in the region. Also, given the high fragmen-
tation of the !andscape in the African regions of rainfed agriculture, AVHRR NDVI
data (at I-km spatial resolution) integrates natural vegetation with cultivated fields
(Philipson and Teng, 1988). It thus assumed that these tvw classes of vegetation
spectrally behave according to a similar seasonal pattern. Azalli (1990) has shown that it
is possible to mask the non-agricultural domain on low spatial resolution data (AVHRR
LAC or GAC) by superimposing a land cover classification performed on higher
resolution data (Landsat or SPOT) in order to analyze the NDVI seasonal development
curve of cultivated fields separately from the surrounding natural vegetation. Maselli et
al. (1992) have used a geographical standardization process to remove differences in
local environmental factors from the NDVI.

5.3. SEMI-DETERMINISTIC AGROMETEOROLOGICAL MODELS

While determinsitic models focus on exhaustively simulating the natural environment,
and statistical models rely on the empirical monitoring of vegetation, semi-deterministic
models attempt to strike a balance between these two approaches in order to find the
best trade-off between accuracy and operationality. Semi-deterministic approaches in
agrometeorology follow two steps. First, temporal series of easily accessible climatic
variables, such as hydric balance, temperature or solar radiation, are used in an attempt
to characterize yield as a function of either stress degree days or crop-water balance
through causal relationships. Second, a statistical relationship is established between
predicted and observed yield through a regression model. Two categories of semi-
deterministic models will be discussed.

5.3. 1. Productivity model

A simple crop-growth model has been used for an operational crop-yield estimation: the
dry-matter accumulation of a crop is calculated from the integral, through the growing
season, of the photosynthetically-active solar radiation (PAR) incident on the crop
canopy multiplied by the absorbed fraction of PAR and by a conversion efficiency
coefficient (Monteith, 1977):

Phytomass=JPAR APAR & dr.

The parameter' represents the efficiency with which specific crop types convert energy
intc' biomass. The NDVI can serve two possible functions in the type of model outlined
above. First, this index may be useful for estimating APAR by a linear relationship that
has to be empirically calibrated:

APAR=a+b NDVI.

The estimation of APAR through the NDVI is the statistical component of the semi-
deterministic model. Second, the NDVI can be used to identify the temporal bounds of
that portion of the crop-growth cycle for which the phytomass produced can best be
related to crop yield (see Section 5.2.2). For example, Henricksen and Durkin (1986)
established the length of the growing season in Ethiopia using AVHRR NDVI data.

Although this model has been used in the Sahel (Bartholom., 1988; Imbernon et al.,
1990), its physical basis is not quite appropriate to semi-arid regions. This model is based
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on a proportional relation between dry-matter production by a crop and the amount of
solar radiation absorbed by the foliage of that crop, while the main limiting factors to
production in semi-arid regions are water availability and soil nutrients, not explicitly
accounted for in the above productivity model. Moreover, Prince (1991) points out the
difficulty in determining the efficiency index "C", or the rate at which a plant canopy
converts APAR into biomass. This parameter can probably not be considered constant
and should be modified by parameters reflecting departure from optimal efficiency due
to physical stress, and the proportion of assimilate used for maintenance respiration.
This can be especially problematic if biomass estimates (or crop-yield estimates) are
attempted using low spatial resolution satellite data, if the crop cover is heterogeneous or
if environmental conditions vary over the landscape of interest. Finally, Demetriades-
Shah et al. (1992) demonstrates that crop growth and radiation interception will always
be well correlated, even without a strong causal relationship, because: (I) anything
increasing in size intercepts more radiant energy, for a simple geometric reason- and (2)
any series of accumulating values are highly correlated, for an arithmetic reason.

When using remote sensing to estimate input data for more complex crop growth
models, several problems arise. If a single satellite source is used to estimate several
parameters, independence among the derived variables may be compromised. This can
also be a problem if the NDVI itself is used as one of the input variables since it is
correlated to many ecological variables. Also, errors in the estimation of input variables
using remote-sensing models may be compounded and propagated through an agricul-
tural yield model resulting in unacceptable errors in the final output. For example, small
errors in the NDVI can translate into large errors in inferred biophysical processes. The
most obvious source of error is that associated with the natural variance in the statistical
r:lationship between remotely-sensed data and the variable of interest. Errors can also
arise for other reasons, including the reflectance precision of the sensor, viewing
geometry, atmospheric conditions, anisotropic properties of surface reflectance and
atmospheric scattering, image-processing procedures (e.g. maximum value compositing)
and between-scene registration (Goward et al., 1991).

5.3.2. Yield-reduction model

Yield-reduction models estimate the ideal production for a certain region (Y.) from
records of previous "normal" years and then use various environmental monitoring
schemes to reduce that ideal in order to predict the crop yield of the current season (Y).
Rather than monitor the vigor of the vegetator. .;e-ni-deterministic schemes monitor the
stresses that can affect the final yield of the harvest. A general format of this model is:

Y= a + b Y,- c (Hydric stress) - d (Thermal stress).

with a, b, c and d being calibration parameters. In the case of the Sahel, hydric stress is
the primary culprit of low yields. It can be measured as the difference between potential
and actual crop evapotranspiration (Frere and Popov, 1986). Thermal stresses further
affect the vegetation by reducing a plant's ability to retain and process water. Thereore,
available (post-runoff) moisture and evapotranspiration govern the growth ind finr',
yield of a crop.

Stress models primarily use daily precipitation, minimi'm and maximum temperat-
ures and soil conditions to measure actual evapotranspirat.-a, ,jf a specific crop and
determine moisture availability for crop growth. By remotely sensing these parameters,
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evapotranspiration estimates can be monitored and their impact on crop yields
evaluated. Some operational methods rely primarily on satellite-detected temperatures
as well as routine meteorological ground measurements to obtain a satellite-derived
stress index (Boatwright and Whitehead, 1986). Other non-remote-sensing methods
monitor the cumulative water balance throughout the growing season and generate a
water satisfaction index to determine whether a certain crop is being affected. For
example, the Global Information and Early Warning System on Food and Agriculture
under the FAO publishes a cumulative water balance or water satisfaction index which
gives a general indication of the per cent of potential yield which can be expected
following water stress (Frere and Popov, 1986). Further reductions in crop yield can be
introduced if disease or insect damage is noted. Such approaches may be general in
nature and fraught with accuracy problems, but they provide some timely indication of
crop conditiorn and have an unambiguous biophysical basis. They are better adapted for
regional scales. If combined with remotely-sensed data to measure hydric stress (through
evapotranspiration) and thermal stress (through surface temperature), yield reduction
models offer the greatest potential for agricultural production monitoring, though there
is little experience with this type of integration.

6. Information system

We have described methods for data acquisition and data analysis for agricultural
production monitoring. However, an information system is composed of four other sub-
systems: database management, data input and storage, information output and
information use. Geographic information systems (GIS) can combine all four sub-
systems into one common database and employ one software package. The incorpora-
tion of satellite data in the GIS promotes the use of a raster-based system (grid
database). Although the initial financial and time costs of setting up a GIS is high, the
long-term benefits of data manipulation, update and output justify these costs. More-
over, a GIS is flexible and can be easily adapted to rapidly-evolving scientific methods
and technological capabilities. Berkhout (1986) has developed the concept of the
integration of a crop-growth model and a GIS as a tool for famine early warning. He
concluded that extensive field observations were still required in addition to the
processing of remotely-sensed data in order to quantify the combined effect of all land
entities and farm practices on specific crops. The number of field observations could be
reduced with the calibration of simulation models over a number of years. This requires
the availability of archives of data.

Given the real-time requirement of the application and the decentralized character of
the data (especially ground data), a powerful data transmission system has also to be
implemented. The volume of data to be transmitted in order to monitor agricultural
production at a regional scale may require unrealistic data transmission capabilities for
the present telecommunications infrastructure of the Sudano-Sahelian region.

7. Perspectives and future needs

Currently, all the systems to monitor agricultural production in the Sahel at a regional
scale are qualitative and based on a statistical or empirical approach. A purely
deterministic approach is not feasible today. The bottleneck for such an approach is not
situated at the level of models but rather at the level of the infrastructure for data
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collection. However, at the state of the art, this study is showing that a semi-
deterministic approach is possible and that several key variables can be estimated
reliably from remotely-sensed data. In order to implement these semi-deterministic
approaches and to improve the scientific and technical expertise in agricultural produc-
tion monitoring in the Sahel, we make the following recommendations:

I. More ground data collection networks are needed in :he Sahel. National and
regional networks of meteorological, agronomic and ecological stations should be
exparded in order to: (1) grasp better the spatial variability of environmental
variatles in the Sahel; and (2) create archival data to increase the reliability of
statistical approaches in the future.

2. Telecommunications infrastructure should be enhanced wherever possible. Fund-
ing for infrastructure improvements should always include a training component.

3. Projects for soil and topographic mapping, in digital format, should be promoted
for integration with GIS. The mapping and monitoring of this variable, which has
a considerable influence on crop yields, is currently the weakest part of an
agricultural production monitoring system. Also, a better understanding of per-
pixel surface roughness is the primary requirement for an accurate deterministic
pixel-by-pixel evapotranspiration calculation. Remote-sensing methods for deter-
mining surface roughness (perhaps active systems instead of passive), wind speed
and soil cover routinely throughout a growing season will dramatically increase
accuracies. Per pixel soil attribute information will also improve evapotranspi-
ration calculations.

4. Many remote-sensing models require detailed ground data and, while these
models have been tested under experimental conditions, their operational poten-
tial still needs to be verified and validated through further research. There is a
need to scale-up from empirical field studies and model simulations to testing the
use of satellite data on a regional scale.

5. The co-operation among researchers working on related projects should be
promoted. Setting up different systems in different regions is counterproductive
when the goal is to solve problems at the sub-continental scale. Moreover, by its
interdisciplinary character, the research on agricultural production monitoring is
currently scattered. Different teams develop some pieces of the system, but very
few people work on the integration of the pieces and on the validation of the
whole chain of operations to estimate reliably agricultural production in a timely
fashion.

The initial research leading to this paper was undertaken at da Vinci consulting (Belgium) by Eric
Lambin and was funded by the Joint Research Centre of the Commision of the European
Community (study 4027-90-07 ED ISP F). The research has been pushed further at Boston
University.
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